

Richard LHERMITTE

VP Solutions & Market development

Tim HOSMER

Director of Comark Digital Services

Key covered topics

Overview

- Why ATSC3.0
- Key advantages for Broadcasters
- Key advantages for End Users
- Broadcast & Broadband convergence

Technical

- Audo and Video compression
- Air interface: OFDM, SFN, MultiPLP
- Linear TV delivery: DASH/MPU -> ROUTE/MMTP and Signaling
- Architectures

ATSC 1.0 - where we are

Built on 4 new technologies (AT The Time)

- Real Time Media Compression
 - Video (MPEG 2)
 - Audio (AC-3)
- Multiplexing (MPEG 2 TS)
 - Metadata (PSIP)
- Digital STL (ASI / SMPTE 310M)
- Digital Modulation (8VSB)

ATSC 3.0 - introduction

The same 4 layers in ATSC 3.0

- New Compression codec's
 - Video (HEVC)
 - Audio (AC-4)
- Packaging / Streaming (DASH / MMT)
 - Metadata (ROUTE, MMTP)
- IP Digital STL
- Digital Modulation (A3P)

Objectives Introduction

Merge Broadcast and Broadband services

- Offering capability to ATSC 3.0 receiver to receive broadband services
- Delivering services to existing home devices

Using Advanced Video and Audio compression for

- More channels
- 4K UHD Services with HDR
- Multichannels Immersive Audio

Advanced modulation

- More robust, SFN, PLPs, LDM
- Better indoor reception and mobile reception

Objectives Introduction

Interactives features, application (NRT)

- Advance Emergency Alert
- Audience measurement
- Data delivery (push data) to any devices (including cars, billboard advertising)
- Targeted Ad Insertion

Flexible for future extension

CES 2018

Completion of ATSC 3.0 Standard

Broadcaster

Advantage

Broadcaster Advantages

- Additional capacity = More channels
- Better reception = Indoor, Mobility...
- New business models
 - Advanced and Targeted Advertising
 - Datacasting
 - Subscription services
 - Usage reporting

• OTA and OTT Convergence

- Full IP standard
- OTT based content for linear TV

Broadcaster

Advantage

Broadcaster Advantages

Better end user experience:

- Improve audio & video quality
 - Video = HEVC (H265)
 - Audio = AC4 or MPEG-H
- Interactivity

Using less bandwidth

Video Comparison (1080p @ 23,976)

Video Codec	Distribution	Bitrate (Mbps)	2 hrs (GB)	Qf
MPEG2	DVD (typical)	32.0	26.8	.64
	Online (max.)	16.7	14.0	.34
H.264	Blu-Ray (typical)	25.0	21.0	.50
	Online (max.)	10.0	8.4	.20
	Broadcast (typ.)	6.0	5.0	.12
H.265	Online (max.)	6.0	5.0	.12
	Broadcast (typ.)	4.0	3.4	.08

Audio Comparison

Enhancements to Linear TV

- Service Types Enhanced linear services include alternative components and interactive application enhancements, pre-load application-based VoD services, audio-only services, push style data-only services
- Hybrid Delivery Delivery of programs, program elements and triggers via broadcast to announce additional products or services available to those with broadband connectivity
- Main program delivered via broadcast and alternate components or interstitials delivered via broadband
- Trigger delivered in broadcast and preloaded content delivered via broadband
- Temporary "hand-off" from broadcast to broadband and back for brief fades in reception
- Real-Time and Non-Real-Time Delivery Content can be streamed in real-time (i.e., linear or streaming on-demand content) via both broadcast and broadband. Content can also be delivered in non-real-time and cached locally via both broadcast and broadband.

End User

End User Advantages

Video = Better image quality

- SD, HD and UHD using HEVC
- High Frame rate
- High Dynamic Range & Wide Color Gamut

12

HDR (High Dynamic Range)

On the left is macroblocking as done by AVC/H.264. As you can see on the right, there's a lot more flexibility, not to mention larger sizes, for the HEVC/H.265 encoder to work with.

HDR (High Dynamic Range)

End User

End User Advantages

Audio with Dolby AC4 or MPEG-H

- Immersive audio: sound from any directions
- Object based:
 - User choose what he want to listen
 - Sound is restituted at home according to user audio system
 - Efficiently transmitted: no audio / sound duplications

Base Audio Bed Static audio elements, with stirring base tones and rich audio textures

Sound "Objects" Moving around and above you in multi-dimensional space...adds a **height dimension** not ever before present!

Real Sound Simulation Multi-dimensional audio that fully immerses you in the scene!

Dolbv

Braodcaster

Broadcaster Advantages

MPEG-2 TS: Audio Elementary Stream Audio Programme Components Signaling Information M&E **Dialogue EN** Dialogue IT AD IT Team Radio **Default Preselection** M&E **Dialogue EN Dialogue IT** AD IT Team Radio (English) M&E **Dialogue EN Dialogue IT** AD IT **Team Radio Italian Preselection** Italian Audio Description M&E **Dialogue EN Dialogue IT** AD IT **Team Radio** Preselection **English Team Radio** M&E **Dialogue EN Dialogue IT** AD IT Team Radio Preselection M&E Only Preselection M&E **Dialogue EN Dialogue IT** AD IT **Team Radio** Franhauffer

MME = Main or Music & Effects

AC4 Audio

Dolby AC-4 capabilities include

- Greatly improved compression efficiency, up to 50 percent better than current broadcaststandard technologies
- Native support for dialogue enhancement, intelligent loudness, and advanced dynamic range control
- The most efficient support for multiple languages and descriptive services
- Delivery of optimum playback across all use cases and devices
- Immersive audio, enabling sound to move around the audience in three-dimensional space
- Personalized audio streams that enable broadcasters to provide customized presentations and elements that consumers can select to enjoy audio that matches their interests
- You can transfer information more reliably. Built-in self-configuration and automation will improve reliability and help you lower your operational costs. And Dolby AC-4 gives you the flexibility to deliver future services and experiences—on your timetable.
- Dolby AC-4 provides the tools. You decide how and when to use them.

End User

End User Advantages

- Interactivity
 - HTML5 & Java script based
 - With dedicated TV Service API
- Mix OTA, OTT, VOD on same device
- Include additional information and videos around primary Live TV services
- On the main display or on the second screen

ATSC3.0 System Layers overview

ATSC3.0 Protocol stack

							Signaling		
	signaling NRT		DASH/MPU		NRT	Signaling	Presentation		
	ROUTE/MMTP				HTT	Ρ	Signaling		
	UDP			ТСР)	Protocols		
Signaling	IP			IP					
Data Link Layer (e.g. GSE or TLV or ALP)				Data Link Layer		Layer	T Signaling		
Physical Layer (e.g. ATSC 3.0)			Physical Layer		Layer	(Physical Layer)			

ATSC 3.0 = IP network

- IP is the delivery transport for all content in ATSC 3.0
- IP datagrams can contain any kind of content

	signaling	NRT	DASH/MP	U	NRT	Signaling
		ROUTE/M	IMTP	нттр		
		UDP		ТСР		
Signaling			IP			
Data	Link Layer (e.ş	g. GSE or T	C)ata Link	Layer	
	e.g. ATSC		Physical	Layer		

OTA OTT Convergence Linear TV delivery

ATSC 3.0 decided that the linear TV will be

- Package as OTT
- Using ISO BMMF Segments: DASH or MPU

CE devices will receive segments

- That could be decoded by any OTT player
- Embeded in the CE devive
- Or store localy and acesse using any OTT local player

CE device could then receive content through

- ATSC 3.0 air interface
- And / or through Broadband connection

Content delivery

ATSC3.0 propose 2 mechanisms to deliver Linear TV

- MPU segments delivered over MMTP
- DASH segments delivered over ROUTE
- ROUTE only for Non real time content delivery
 - Electronic Service Guide
 - Interactive Applications
 - Push of content

	signaling	NRT	DASH/MP	U	NRT	Signaling
		IMTP	нттр			
			ТСР			
ignaling	IP			IP		
Data	g. GSE or T	C)ata Link	Layer		
	e.g. ATSC	I	Physical	Layer		

ATSC 3.0 Physical Layer (A3P) Air Interface

- Supported bit rate ranges in a 6MHz channel are ...
- Minimum 0.83 Mb/s using QPSK, coderate 2/15, 8K FFT, 300usec GI
 Maximum 56 Mb/s using 4096 QAM, coderate 13/15, 32K FFT, 28usec GI
- A ~28Mbps service in 6 MHz is considered a "comparable" use case to a 8VSB
- Receivers must support at least 4 PLP's
- Multiple PLP's allow mixing different combinations of bits vs. robustness

Modulation Performance

Air interface ATSC3.0 vs ATSC1

Air interface ATSC3.0 vs ATSC1

Fixe modulation:

- Fix robustness
- Fix bitrate
- One 'multiplex' per frequency

Different possible modulations:

- Different robustness
- Different bitrate
- Multiple 'multiplexes' per frequency using Physical Layer Pipe (PLP)

SFN capability

VSB vs OFDM

□ ATSC 1.0

- 8VSB is a single carrier modulation
- Peak to average ratio is 6-7dB typical
- Typical HPA building block rating is 25kW rms (after the mask filter, aka TPO)

□ ATSC 3.0

- OFDM is used for ATSC 3.0, multicarrier modulation
- Peak to average ratio is 10dB typical, PAPR is employed
- − Typical 25kW HPA needs to be de-rated by 15-20% (i.e. $25 \rightarrow 20$ kW TPO)

PARALLAX

- > The PARALLAX is designed around the BLF888E device:
 - ✓ The 888E has been optimized with higher class C peaking amp capacity via Asymmetrical Doherty design
 - Asymmetrical Doherty design actually increases operating efficiency in ATSC 1.0 mode
 - ✓ The 888E is ideal for waveforms with higher peak to rms (i.e. OFDM)
- The 2kW PARALLAX Power Amplifier module provides the same RF output power in ATSC 1.0 (8VSB) and ATSC 3.0 (OFDM)

Physical Layer Pipe Main concept

PLPs

Service	PLP#	FFT	GI	Mod	Cod	Outer FEC	Inner FEC	Frame
UHD	PLP1	32k	148µS	256 QAM	13/15	BCH	64800	250mS
SD	PLP2	32k	148µS	64 QAM	10/15	BCH	64800	250mS
Mobile	PLP3	8k	148µS	QPSK	5/15	BCH	16200	100mS
NRT	PLP4	8k	148µS	QPSK	3/15	BCH	16200	100mS

Service	PLP#	% Channel	PLP Capacity	AGWN SNR	Rayleigh SNR	Doppler
UHD	PLP1	45%	17.3Mb/s	22.2 dB	26.6dB	49 mph
SD	PLP2	25%	5.5Mb/s	12.9dB	15.8dB	49 mph
Mobile	PLP3	20%	0.58Mb/s	-1.3dB	-0.1dB	180 mph
NRT	PLP4	10%	0.17Mb/s	-3.7dB	-3.0dB	180 mph
Total		100%	23.6Mb/s			

Physical Layer Pipe pamareters

- Every PLP have its own robustness and bit rate based on Modulation, FEC and interleaving parameters
- Some modulation parameters are PLP specific to allow specific service robustness and bandwidth

- ATSC3.0 standard request receivers to be able to decode a minimum of 4 PLPs in parallel
- PLP is not optional and could be used without any constrain or problematics

MultiPLP - QoS classes scenario

- 3D/HD/SD services : One PLP can carry 3D or HD services with low robustness (to increase the bandwidth), while another PLP could carry SD services with high robustness.
- TV/Radio services : Radio services are delivered on different PLP on a higher robustness to support in-door or mobile reception.

MPLP - Frequency sharing

Tall Tower vs SFN

- High Power / High Tower DTV provides decent coverage for fixed reception:
 - 30' outside antenna, towards the extents of coverage radius
 - Indoor antenna, close in to tower
- How can we improve coverage in the service area?
 - More transmitters within a given coverage area all on the same channel
 - Utilize elliptical polarization more RF power density
- Single Frequency Networks (SFN) employs multiple transmitters to cover a service area:
 - Each transmitter is on the same RF frequency
 - Each transmitter is fed the same "IP" signal via STL, Fiber, etc (contribution network)
 - Transmitters are "adjusted" to compensate for contribution timing differences and to minimize self-interference

SFN topology advantages

Better RF coverage

Several lower amplifiers instead of only one highly powered transmitter

Increase power reception

Transmission from all these lower powered amplifiers enable better RF coverage

• OFDM is more tolerant to multipath and echos compare to 8VSD

ATSC 3.0 - Protocol stack

ATSC3.0 Signaling

Services signaling generation and delivery

- LLS/SLT tables to enable the receiver to build a basic service list, and bootstrap the discovery of the SLS for each ATSC 3.0 service. The SLT can enable very rapid acquisition of basic service information.
- SLS fragments to enable the receiver to discover and access ATSC 3.0 services and their content components

manner of this transmission

ATSC3.0 Signaling - Mono PLP

ATSC3.0 Signaling - Multi PLP

Possible Sharing Plan for Simulcast

As possible conclusion

- Imagine a Market with 24 SD, 7 720p, 6 1080i across 12 RF channels
- ATSC-1 total 8 RF channels
 - 2 transmitters with 10 SD
 - 2 transmitters with 2 x 720p + 2 SD
 - 1 transmitter with 3 x 720p
 - 3 transmitter with 2 x 1080i

ATSC-3 3 RF channels:

- 2 transmitter with 24 SD mostly 480p
- 2 transmitters with 2 x 1080p HDR + 5 720p

Over time some ATSC 1 programming will be dropped to allow more ATSC 3, driven by viewership

Big Picture

93

MPTE